The Stability of Mixed Saliva Analytes Under Different Centrifugation Conditions
PDF (Русский)

Keywords

saliva
pre-analytical procedures
centrifugation
interference
biochemical tests

Abstract

Introduction. Mixed saliva is a heterogeneity biofluid. This characteristic can significantly influence the results of laboratory tests, making it essential to understand its impact on analytical methods.
The aim of this study was to evaluate the impact of centrifugation speed on the accuracy of biochemical analyses of mixed saliva.
Materials and methods. An open-label, single-stage study involving 15 healthy volunteers was conducted. The mixed saliva was collected from each participant and mixed to create a “drain sample”. This sample was divided into three groups of ten samples, which were subjected to centrifugation at different speeds (1 000 rpm, 1 500 rpm, and 2 700 rpm) for 15 minutes.
Results. It was found that the cholesterol levels in the 1 000 rpm acceleration mode were higher than in the 1 500 and 2 700 modes, although the median value was not significant. According to indicators such as total protein, alkaline phosphatase, calcium, and phosphorus, there were differences between modes with accelerations of 1 000 and 2 700 rpm. The assessment of the average difference showed that the most significant differences were observed in the mode with acceleration of 2 700: alkaline phosphatase increased by 49.52 %, the total protein — by 20.41 %, calcium — by 5.29 %, phosphorus — by 4.98 %.
Discussion. The result can be attributed to the deposition of bacteria, cellular debris, and high-molecular weight glycoproteins, which contribute to the uniformity and decrease in turbidity of the material. In the case of calcium and phosphorus, the destruction of high-molecular proteins can lead to an increase in the number of ionized forms.
Conclusions. The most significant differences were observed in the activity of alkaline phosphatase and the level of total protein, followed by the level of total calcium and inorganic phosphorus. Statistically significant differences were found for cholesterol, although its concentration was relatively low.

Funding
The work was carries out at the expense of the state task for the research work “Genetic and Epigenetic Foundations for Predicting Human Ontogenesis and Aging Disorders” (registration number 122120100026-3).

For citation
Kopenkin MA, Basova EA, Polushina LG, Bazarnyi VV. The stability of mixed saliva analytes under different centrifugation conditions. USMU Medical Bulletin. 2024;(2):7–18. (In Russ.). EDN: https://elibrary.ru/KRLRLO.

PDF (Русский)

References

Saliva Diagnostics — Current Views and Directions / K. E. Kaczor-Urbanowicz, C. Martin Carreras-Presas, K. Aro [et al.] // Experimental Biology and Medicine. 2017. Vol. 242, Iss. 5. P. 459–472. DOI: https://doi.org/10.1177/1535370216681550.

Schipper R. G., Silletti E., Vingerhoeds M. H. Saliva as Research Material: Biochemical, Physicochemical and Practical Aspects // Archives of Oral Biology. 2007. Vol. 52, Iss. 12. P. 1114–1135. DOI: https://doi.org/10.1016/j.archoralbio.2007.06.009.

Gröschl M. Saliva: A Reliable Sample Matrix in Bioanalytics // Bioanalysis. 2017. Vol. 9, Iss. 8. P. 655–668. DOI: https://doi.org/10.4155/bio‑2017-0010.

Mortazavi H., Yousefi-Koma A.-A., Yousefi-Koma H. Extensive Comparison of Salivary Collection, Transportation, Preparation, and Storage Methods: A Systematic Review // BMC Oral Health. 2024. Vol. 24, Iss. 1, Art. No. 168. DOI: https://doi.org/10.1186/s12903-024-03902‑w.

Could Inflammation Contribute to Salivary Gland Dysfunction in Patients with Chronic Heart Failure? / A. Klimiuk, A. Zalewska, M. Knapp [et al.] // Frontiers in Immunology. 2022. Vol. 13, Art. No. 1005981. DOI: https://doi.org/10.3389/fimmu.2022.1005981.

Oxidation, Glycation, and Carbamylation of Salivary Biomolecules in Healthy Children, Adults, and the Elderly: Can Saliva Be Used in the Assessment of Aging? / M. Maciejczyk, M. Nesterowicz, J. Szulimowska, A. Zalewska // Journal of Inflammation Research. 2022. Vol. 15. P. 2051–2073. DOI: https://doi.org/10.2147/JIR.S356029.

Impact of Matrix Metalloproteinase‑9 During Periodontitis and Cardiovascular Diseases / G. Isola, A. Polizzi, V. Ronsivalle [et al.] // Molecules. 2021. Vol. 26, Iss. 6, Art. No. 1777. DOI: https://doi.org/10.3390/molecules26061777.

Xu F., Laguna L., Sarkar A. Aging-Related Changes in Quantity and Quality of Saliva: Where Do We Stand in Our Understanding? // Journal of Texture Studies. 2019. Vol. 50, Iss. 1. P. 27–35. DOI: https://doi.org/10.1111/jtxs.12356.

Биохимические особенности ротовой жидкости при старении / М. А. Копенкин, Л. Г. Полушина, Е. А. Семенцова [и др.] // Клиническая лабораторная диагностика. 2024. Т. 69, № 3. С. 108–115. DOI: https://doi.org/10.51620/0869-2084-2024-69-3-108-115.

Является ли значение саливарного общего белка индикатором стоматологического здоровья в старших возрастных группах? / М. А. Копенкин, В. В. Базарный, Л. Г. Полушина [и др.] // Актуальные вопросы современной медицинской науки и здравоохранения : сб. ст. Екатеринбург : УГМУ, 2023. С. 1975–1981. EDN: https://elibrary.ru/tvjmsc.

Maciejczyk M., Zalewska A., Ladny J. R. Salivary Antioxidant Barrier, Redox Status, and Oxidative Damage to Proteins and Lipids in Healthy Children, Adults, and the Elderly // Oxidative Medicine and Cellular Longevity. 2019. Vol. 2019, Art. No. 4393460. DOI: https://doi.org/10.1155/2019/4393460.

Measurement of Anti SARS-CoV‑2 RBD IgG in Saliva: Validation of a Highly Sensitive Assay and Effects of the Sampling Collection Method and Correction by Protein / S. Martínez-Subiela, L. Franco-Martínez, C. P. Rubio [et al.] // Clinical Chemistry and Laboratory Medicine. 2022. Vol. 60, Iss. 10. P. 1683–1689. DOI: https://doi.org/10.1515/cclm‑2022-0418.

Salivary Proteome and Its Genetic Polymorphisms / F. G. Oppenheim, E. Salih, W. L. Siqueira [et al.] // Annals of the New York Academy of Sciences. 2007. Vol. 1098, Iss. 1. P. 22–50. DOI: https://doi.org/10.1196/annals.1384.030.

Age and Gender Related Changes of Salivary Total Protein Levels for Forensic Application / D. Bhuptani, S. Kumar, M. Vats, R. Sagav // Journal of Forensic Odonto-Stomatology. 2018. Vol. 36, Iss. 1. P. 26–33. PMID: 29864027.

The Effects of Storage Time and Temperature on the Stability of Salivary Phosphatases, Transaminases and Dehydrogenase / D. R. dos Santos, R. O. Souza, L. B. Dias [et al.] // Archives of Oral Biology. 2018. Vol. 85. P. 160–165. DOI: https://doi.org/10.1016/j.archoralbio.2017.10.016.

Saliva Profiling with Differential Scanning Calorimetry: A Feasibility Study with Ex Vivo Samples / L. Pultrone, R. Schmid, T. Waltimo [et al.] // PLoS One. 2022. Vol. 17, Iss. 6, Art. No. e0269600. DOI: https://doi.org/10.1371/journal.pone.0269600.

Evaluation of Biochemical Parameters Present in the Saliva of Patients with Chronic Periodontitis: Results from a Meta-Analysis / D. Di Lenardo, F. R. P. da Silva, L. F. de Carvalho França [et al.] // Genetic Testing and Molecular Biomarkers. 2019. Vol. 23, No. 4. P. 255–263. DOI: https://doi.org/10.1089/gtmb.2017.0272.

Goyal G. Comparison of Salivary and Serum Alkaline Phosphates Level and Lactate Dehydrogenase Levels in Patients with Tobacco Related Oral Lesions with Healthy Subjects — A Step Towards Early Diagnosis // Asian Pacific Journal of Cancer Prevention. 2020. Vol. 21, Iss. 4. P. 983–991. DOI: https://doi.org/10.31557/APJCP.2020.21.4.983.

Agha-Hosseini F., Mirzaii-Dizgah I., Moosavi M.-S. Relationship of Serum and Saliva Calcium, Phosphorus and Alkaline Phosphatase with Dry Mouth Feeling in Menopause // Gerodontology. 2012. Vol. 29, Iss. 2. P. e1092–e1097. DOI: https://doi.org/10.1111/j.1741-2358.2012.00619.x.

Salivary Alkaline Phosphatase Activity and Chronological Age as Indicators for Skeletal Maturity / N. Alhazmi, C. A. Trotman, M. Finkelman [et al.] // Angle Orthodontist. 2019. Vol. 89, Iss. 4. P. 637–642. DOI: https://doi.org/10.2319/030918-197.1.

Aldafaai R. R., Jafar Z., Al-Rubbaey Y. Impact of Dental Anxiety on Dental Caries and Salivary Alkaline Phosphatase in Children Across Different Nutritional Statuses // Journal of Medicine and Life. 2023. Vol. 16, Iss. 10. P. 1540–1545. DOI: https://doi.org/10.25122/jml‑2023-0085.

Evaluation of Salivary Alkaline Phosphatase Levels in Passive Smokers of Different Age Groups / S. A. Mulla, A. S. Bedia, H. K. Nimmagadda [et al.] // Cureus. 2023. Vol. 15, Iss. 7, Art. No. e41336. DOI: https://doi.org/10.7759/cureus.41336.

Relationship Between Salivary Alkaline Phosphatase Enzyme Activity and the Concentrations of Salivary Calcium and Phosphate Ions / M. Jazaeri, H. Malekzadeh, H. Abdolsamadi [et al.] // Cell Journal (Yakhteh). 2015. Vol. 17, Iss. 1. P. 159–162. DOI: https://doi.org/10.22074/cellj.2015.523.

Bel’skaya L. V., Sarf E. A., Kosenok V. K. Age and Gender Characteristics of the Biochemical Composition of Saliva: Correlations with the Composition of Blood Plasma // Journal of Oral Biology and Craniofacial Research. 2020. Vol. 10, Iss. 2. P. 59–65. DOI: https://doi.org/10.1016/j.jobcr.2020.02.004.

Estimation of Salivary Glucose, Amylase, Calcium, and Phosphorus Among Non-diabetics and Diabetics: Potential Identification of Non-invasive Diagnostic Markers / R. E. G. Tiongco, E. S. Arceo, N. S. Rivera [et al.] // Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019. Vol. 13, Iss. 4. P. 2601–2605. DOI: https://doi.org/10.1016/j.dsx.2019.07.037.

Salivary Levels of Calcium, Phosphorus, Potassium, Albumin and Correlation with Serum Biomarkers in Hemodialysis Patients / V. P. Rodrigues, M. M. Franco, C. P. Marques [et al.] // Archives of Oral Biology. 2016. Vol. 62. P. 58–63. DOI: https://doi.org/10.1016/j.archoralbio.2015.11.016.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Copyright © 2024 Kopenkin M. A., Basova E. A., Polushina L. G., Bazarnyi V. V.