Cardiovascular Conundrum: Discovering Bioprosthetic Valve Stenosis in a 67-Year-Old Woman with Acute Coronary Syndrome Presentation
PDF

Keywords

bioprosthetic heart valves
aortic stenosis
acute coronary syndrome
ACS
structural valve degeneration
echocardiography

Abstract

Bioprosthetic valve stenosis is characterized by an increase in transvalvular velocity and pressure gradient alongside thickened or calcified leaflets. It is a condition typically observed after bioprosthetic heart valve implantation because of structural valve degeneration, a process that typically begins around 7–8 years post-implantation and can culminate in valve stenosis or regurgitation due to calcification, leaflet tear, or pannus formation. Uncommonly, bioprosthetic aortic valve (BAV) stenosis may provoke acute coronary syndrome (ACS)-like symptoms in patients, unrelated to coronary artery obstruction, possibly due to a supply-demand mismatch impacting coronary vasculature, particularly under conditions of tachycardia and myocardial hypertrophy. A case illustration featuring a 67-year-old woman with BAV stenosis experiencing ACS-like symptoms 9 years post-surgical aortic valve replacement highlights the diagnostic challenges. Unstable angina and cardiac biomarker results were suggestive of ACS, but transthoracic echocardiogram (TTE) revealed a moderately stenotic BAV in the patient. A significant decrease in left ventricular ejection fraction and left ventricular stroke volume over time, compared with prior TTE assessments across the years, signifies the hemodynamic compromise linked to BAV stenosis. Adhering rigorously to American College of Cardiology/American Heart Association guidelines mandating routine TTE evaluations at 5- and 10-year intervals post-implantation and yearly thereafter for all BAV recipients, regardless of clinical status, is imperative to avert potential complications. Thus, prioritizing early detection of valve dysfunction via TTE in suspected ACS patients with prior BAV placement is crucial in devising optimal treatment strategies and enhancing patient care.

Acknowledgements
The authors wish to express their deepest gratitude to the medical staff of the Cardiology Department of the City Clinical Hospital No. 31 named after Academician G. M. Savelyeva (Moscow), which actively participated in treating the patient.

For citation
Yeo MAH, Zhuravlev AC. Cardiovascular conundrum: Discovering bioprosthetic valve stenosis in a 67-year-old woman with acute coronary syndrome presentation. USMU Medical Bulletin. 2024;(4):67–79. EDN: https://elibrary.ru/KNYCRF.

PDF

References

Yacoub M. H., Takkenberg J. J. M. Will Heart Valve Tissue Engineering Change the World? // Nature Clinical Practice Cardiovascular Medicine. 2005. Vol. 2, Iss. 2. P. 60–61. DOI: https://doi.org/10.1038/ncpcardio0112.

Degeneration of Bioprosthetic Heart Valves: Update 2020 / A. E. Kostyunin, A. E. Yuzhalin, M. A. Rezvova [et al.] // Journal of the American Heart Association. 2020. Vol. 9, No. 19, Art. No. e018506. DOI: https://doi.org/10.1161/jaha.120.018506.

Mechanisms and Drug Therapies of Bioprosthetic Heart Valve Calcification / S. Wen, Y. Zhou, W. Y. Yim [et al.] // Frontiers in Pharmacology. 2022. Vol. 13, Art. No. 909801. DOI: https://doi.org/10.3389/fphar.2022.909801.

Standardized Definition of Structural Valve Degeneration for Surgical and Transcatheter Bioprosthetic Aortic Valves / D. Dvir, T. Bourguignon, C. M. Otto [et al.] // Circulation. 2018. Vol. 137, No. 4. P. 388–399. DOI: https://doi.org/10.1161/circulationaha.117.030729.

ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines / C. M. Otto, R. A. Nishimura, R. O. Bonow [et al.] // Circulation. 2021. Vol. 143, No. 5. P. e35–e71. DOI: https://doi.org/10.1161/CIR.0000000000000932.

Singh A., Museedi A. S., Grossman S. A. Acute Coronary Syndrome // StatPearls. Treasure Island : StatPearls Publishing, 2024. PMID: https://pubmed.gov/29083796.

Very Severe Aortic Stenosis Masquerading as Acute Coronary Syndrome / S. Ghosh, A. Batta, Y. P. Sharma, P. Panda // BMJ Case Reports. 2021. Vol. 14, Iss. 12, Art. No. e244627. DOI: https://doi.org/10.1136/bcr-2021-244627.

A Case of Critical Aortic Stenosis Masquerading as Acute Coronary Syndrome / S. A. Wayangankar, T. W. Dasari, P. M. Lozano, K. J. Beckman // Cardiology Research and Practice. 2010. Vol. 2010, Art. No. 423465. DOI: https://doi.org/10.4061/2010/423465.

Otto C. M. Valvular Aortic Stenosis: Disease Severity and Timing of Intervention // Journal of the American College of Cardiology. 2006. Vol. 47, Iss. 11. P. 2141–2151. DOI: https://doi.org/10.1016/j.jacc.2006.03.002.

Progression from Compensated Hypertrophy to Failure in the Pressure-Overloaded Human Heart: Structural Deterioration and Compensatory Mechanisms / S. Hein, E. Arnon, S. Kostin [et al.] // Circulation. 2003. Vol. 107, No. 7. P. 984–991. DOI: https://doi.org/10.1161/01.cir.0000051865.66123.b7.

Bioprosthetic Aortic Valve Degeneration: A Review from a Basic Science Perspective / T. R. Velho, R. M. Pereira, F. Fernandes [et al.] // The Brazilian Journal of Cardiovascular Surgery. 2022. Vol. 37, Iss. 2. P. 239–250. DOI: https://doi.org/10.21470/1678-9741-2020-0635.

Kim K. M., Herrera G. A., Battarbee H. D. Role of Glutaraldehyde in Calcification of Porcine Aortic Valve Fibroblasts // The American Journal of Pathology. 1999. Vol. 154, Iss. 3. P. 843–852. DOI: https://doi.org/10.1016/S0002-9440(10)65331-X.

Aortic Valve: Mechanical Environment and Mechanobiology / S. Arjunon, S. Rathan, H. Jo, A. P. Yoganathan // Annals of Biomedical Engineering. 2013. Vol. 41, Iss. 7. P. 1331–1346. DOI: https://doi.org/10.1007/s10439-013-0785-7.

Arzani A., Mofrad M. R. K. A Strain-Based Finite Element Model for Calcification Progression in Aortic Valves // Journal of Biomechanics. 2017. Vol. 65. P. 216–220. DOI: https://doi.org/10.1016/j.jbiomech.2017.10.014.

Rahimtoola S. H. Choice of Prosthetic Heart Valve in Adults: An Update // Journal of the American College of Cardiology. 2010. Vol. 55, Iss. 22. P. 2413–2426. DOI: https://doi.org/10.1016/j.jacc.2009.10.085.

ACC/AHA and ESC/EACTS Guidelines for the Management of Valvular Heart Diseases: JACC Guideline Comparison / A. Coisne, P. Lancellotti, G. Habib [et al.] // Journal of the American College of Cardiology. 2023. Vol. 82, Iss. 8. P. 721–734. DOI: https://doi.org/10.1016/j.jacc.2023.05.061.

Gal-Knockout Bioprostheses Exhibit Less Immune Stimulation Compared to Standard Biological Heart Valves / C. G. McGregor, H. Kogelberg, M. Vlasin, G. W. Byrne // J Heart Valve Dis. 2013. Vol. 22, Iss. 3. P. 383–390. PMID: https://pubmed.gov/24151765.

Kim M. S., Lim H. G., Kim Y. J. Calcification of Decellularized and Alpha-Galactosidase-Treated Bovine Pericardial Tissue in an Alpha-Gal Knock-Out Mouse Implantation Model: Comparison with Primate Pericardial Tissue // European Journal of Cardio-Thoracic Surgery. 2016. Vol. 49, Iss. 3. P. 894–900. DOI: https://doi.org/10.1093/ejcts/ezv189.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Copyright © 2024 Yeo M. A.-H., Zhuravlev A. C.