Application of Texture Analysis in the MR-Diagnosis of Shoulder Pathologies: A Literature Review
PDF (Русский)

Keywords

shoulder joint
magnetic resonance imaging
deep learning
shoulder injuries
radiomics
artificial intelligence

Abstract

Shoulder pathologies, particularly soft tissue injuries, are a common problem requiring accurate and timely diagnosis. Currently, MRI is the gold standard for visualizing shoulder injuries. However, the interpretation of MRI often relies on the subjective assessment of the examiner and can vary depending on their experience. Texture analysis (TA), based on the quantitative evaluation of MRI images, offers a solution by providing objective data that complements and refines expert evaluation. This review examines current research on the application of TA in diagnosing shoulder pathologies. We analyze various TA methods and their application for evaluating different shoulder structures. We compare the performance of automated, machine learning-based approaches with expert interpretation of MRI images. The advantages and limitations of TA are also discussed. The integration of artificial intelligence, and specifically image texture analysis, into clinical practice represents a significant advancement in medical diagnostics. This approach promises substantial benefits by augmenting physicians' expertise with objective assessments derived from mathematical algorithms and machine learning. This integration is expected to not only enhance diagnostic accuracy but also contribute to the development of more precise treatment strategies and preventative measures for various pathologies.

For citation: Shabarova NS, Zhilyakov AA, Zhilyakov AV, Volokitina EA. Application of texture analysis in the diagnosis of shoulder pathologies: A literature review. USMU Medical Bulletin. 2025;10(1):e00133. (In Russ.). DOI: https://doi.org/10.52420/usmumb.10.1.e00133. EDN: https://elibrary.ru/YKCESE.

https://doi.org/10.52420/usmumb.10.1.e00133
PDF (Русский)

References

Iio R, Ueda D, Matsumoto T, Manaka T, Nakazawa K, Ito Y, et al. Deep learning-based screening tool for rotator cuff tears on shoulder radiography. Journal of Orthopaedic Science. 2024;29(3):828–834. DOI: https://doi.org/10.1016/j.jos.2023.05.004.

Rodriguez HC, Rust B, Hansen PY, Maffulli N, Gupta M, Potty AG, et al. Artificial intelligence and machine learning in rotator cuff tears. Sports Medicine and Arthroscopy Review. 2023;31(3):67–72. DOI: https://doi.org/10.1097/JSA.0000000000000371.

Логвинов АН, Ильин ДО, Каданцев ПМ, Макарьева ОВ, Бурцев МЕ, Рязанцев МС, и др. Рентгенологические характеристики акромиального отростка лопатки как прогностический фактор формирования неполнослойных разрывов вращательной манжеты. Гений ортопедии. 2019;25(1):71–78. DOI: https://doi.org/10.18019/1028-4427-2019-25-1-71-78.

Bredella MA, Steinbach LS, Morgan S, Ward M, Davis JC. MRI of the sacroiliac joints in patients with moderate to severe ankylosing spondylitis. American Journal of Roentgenology. 2006;187(6):1420–1426. DOI: https://doi.org/10.2214/AJR.05.1423.

Ganesh J, Patil SD, Muchchandi R, Naik S. Diagnostic comparison of ultrasound and magnetic resonance imaging in detecting rotator cuff tears: A study conducted in the population of vijayapura. Cureus. 2024;16(8):e68302. DOI: https://doi.org/10.7759/cureus.68302.

Gowda CS, Mirza K, Galagali DA. Rotator cuff tears: Correlation between clinical examination, magnetic resonance imaging and arthroscopy. Cureus. 2024;16(3):e56065. DOI: https://doi.org/10.7759/cureus.56065.

Triantafyllou M, Vassalou E, Goulianou A, Tosounidis T, Marias K, Karantanas A, et al. The effect of ultrasound image pre-processing on radiomics feature quality: A study on shoulder ultrasound. Journal of Imaging Informatics in Medicine. 2025. DOI: https://doi.org/10.1007/s10278-025-01421-w.

Day M, Phil M, McCormack RA, Nayyar S, Jazrawi L. Physician training ultrasound and accuracy of diagnosis in rotator cuff tears. Bulletin of the Hospital for Joint Disease. 2016;74(3):207–211. PMID: https://pubmed.gov/27620544.

Feuerriegel G, Kronthaler S, Weiss K, Haller B, Leonhardt Y, Neumann J, et al. Assessment of glenoid bone loss and other osseous shoulder pathologies comparing MR-based CT-like images with conventional CT. European Radiology. 2023;33(12):8617–8626. DOI: https://doi.org/10.1007/s00330-023-09939-9.

Cui DD, Long Y, Yan Y, Li C, Yang YT, Zhong JL, et al. Three-dimensional magnetic resonance imaging fast field echo resembling a computed tomography using restricted echo-spacing sequence is equivalent to 3-dimensional computed tomography in quantifying bone loss and measuring shoulder morphology in patients with shoulder dislocation. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2024;40(6):1777–1788. DOI: https://doi.org/10.1016/j.arthro.2023.12.016.

Alike Y, Li C, Hou J, Long Y, Zhang J, Zhou C, et al. Enhancing prediction of supraspinatus/infraspinatus tendon complex injuries through integration of deep visual features and clinical information: A multicenter two-round assessment study. Insights into Imaging. 2023;14(1):200. DOI: https://doi.org/10.1186/s13244-023-01551-1.

Akiyama S, Nozaki T, Tasaki A, Horiuchi S, Hara T, Yamada K, et al. Longitudinal MR quantification of the fat fraction within the supraspinatus and infraspinatus muscles in patients with shoulder pain. Academic Radiology. 2022;29(11):1700–1708. DOI: https://doi.org/10.1016/j.acra.2022.02.011.

Brockmeyer M, Schmitt C, Haupert A, Kohn D, Lorbach O. Limited diagnostic accuracy of magnetic resonance imaging and clinical tests for detecting partial-thickness tears of the rotator cuff. Archives of Orthopaedic and Trauma Surgery. 2017;137(12):1719–1724. DOI: https://doi.org/10.1007/s00402-017-2799-3.

Khatun Z, Jónsson H, Tsirilaki M, Maffulli N, Oliva F, Daval P, et al. Beyond pixel: Superpixel-based MRI segmentation through traditional machine learning and graph convolutional network. Computer Methods and Programs in Biomedicine. 2024;256:108398. DOI: https://doi.org/10.1016/j.cmpb.2024.108398.

Casula V, Kajabi AW. Quantitative MRI methods for the assessment of structure, composition, and function of musculoskeletal tissues in basic research and preclinical applications. Magnetic Resonance Materials in Physics, Biology and Medicine. 2024;37(6):949–967. DOI: https://doi.org/10.1007/s10334-024-01174-7.

Varriano G, Nardone V, Brunese M, Bruno M, Santone A, Brunese L, et al. An approach leveraging radiomics and model checking for the automatic early diagnosis of adhesive capsulitis. Scientific Reports. 2024;14(1):18878. DOI: https://doi.org/10.1038/s41598-024-69392-6.

He Z, Fang K, Lin X, Xiang CH, Li Y, Huang N, et al. Enhancing preoperative diagnosis of subscapular muscle injuries with shoulder MRI-based multimodal radiomics. Academic Radiology. 2024;32(2):907–915. DOI: https://doi.org/10.1016/j.acra.2024.09.049.

Janacova V, Szomolanyi P, Sitarcikova D, Kirner A, Trattnig S, Juras V. Texture analysis of cartilage repair tissue maturation: comparison of two cartilage repair methods and correlation with MOCART 2.0. CARTILAGE. 2025. DOI: https://doi.org/10.1177/19476035241313047.

Väärälä A, Casula V, Panfilov E, Mobasheri A, Haapea M, Lammentausta E, et al. Predicting osteoarthritis onset and progression with 3D texture analysis of cartilage MRI DESS: 6‐year data from osteoarthritis initiative. Journal of Orthopaedic Research. 2022;40(11):2597–2608. DOI: https://doi.org/10.1002/jor.25293.

Tian Z, Ni Y, He H, Tian B, Gong R, Xu F, et al. Quantitative assessment of rotator cuff injuries using synthetic MRI and IDEAL-IQ imaging techniques. Heliyon. 2024;10(17):e37307. DOI: https://doi.org/10.1016/j.heliyon.2024.e37307.

Ahn TR, Yoon YC, Yoo JC, Kim HS, Lee JH. Diagnostic performance of conventional magnetic resonance imaging for detection and grading of subscapularis tendon tear according to Yoo and Rhee classification system in patients underwent arthroscopic rotator cuff surgery. Skeletal Radiology. 2022;51(3):659–668. DOI: https://doi.org/10.1007/s00256-021-03958-7.

Ni M, Chen W, Zhao Q, Zhao Y, Yuan H. Deep learning approach for MRI in the classification of anterior talofibular ligament injuries. Journal of Magnetic Resonance Imaging. 2023;58(5):1544–1556. DOI: https://doi.org/10.1002/jmri.28649.

Ni M, Gao L, Chen W, Zhao Q, Zhao Y, Jiang C, et al. Preliminary exploration of deep learning-assisted recognition of superior labrum anterior and posterior lesions in shoulder MR arthrography. International Orthopaedics. 2024;48(1):183–191. DOI: https://doi.org/10.1007/s00264-023-05987-4.

Wang G, Han Y. Convolutional neural network for automatically segmenting magnetic resonance images of the shoulder joint. Computer Methods and Programs in Biomedicine. 2021;200:105862. DOI: https://doi.org/10.1016/j.cmpb.2020.105862.

Ni M, Zhao Y, Zhang L, Chen W, Wang Q, Tian C, et al. MRI-based automated multitask deep learning system to evaluate supraspinatus tendon injuries. European Radiology. 2024;34(6):3538–3551. DOI: https://doi.org/10.1007/s00330-023-10392-x.

Adams CR, Brady PC, Koo SS, Narbona P, Arrigoni P, Karnes GJ, et al. A systematic approach for diagnosing subscapularis tendon tears with preoperative magnetic resonance imaging scans. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2012;28(11):1592–1600. DOI: https://doi.org/10.1016/j.arthro.2012.04.142.

Chen W, Lim LJR, Lim RQR, Yi Z, Huang J, He J, et al. Artificial intelligence powered advancements in upper extremity joint MRI: A review. Heliyon. 2024;10(7):e28731. DOI: https://doi.org/10.1016/j.heliyon.2024.e28731.

Fei Y, Wan Y, Xu L, Huang Z, Ruan D, Wang C, et al. Novel methods to diagnose rotator cuff tear and predict post-operative Re-tear: Radiomics models. Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and Technology. 2024;37;14–20. DOI: https://doi.org/10.1016/j.asmart.2024.03.003.

Fritz B, Yi PH, Kijowski R, Fritz J. Radiomics and deep learning for disease detection in musculoskeletal radiology: An overview of novel MRI- and CT-based approaches. Investigative Radiology. 2023;58(1):3–13. DOI: https://doi.org/10.1097/RLI.0000000000000907.

Alipour E, Chalian M, Pooyan A, Azhideh A, Zadeh FS, Jahanian H. Automatic MRI-based rotator cuff muscle segmentation using U-Nets. Skeletal Radiology. 2024;53(3):537–545. DOI: https://doi.org/10.1007/s00256-023-04447-9.

Tang R, Li Z, Jiang L, Jiang J, Zhao B, Cui L, et al. Development and clinical application of artificial intelligence assistant system for rotator cuff ultrasound scanning. Ultrasound in Medicine & Biology. 2024;50(2):251–257. DOI: https://doi.org/10.1016/j.ultrasmedbio.2023.10.010.

Yao J, Chepelev L, Nisha Y, Sathiadoss P, Rybicki FJ, Sheikh AM. Evaluation of a deep learning method for the automated detection of supraspinatus tears on MRI. Skeletal Radiology. 2022;51(9):1765–1775. DOI: https://doi.org/10.1007/s00256-022-04008-6.

Malavolta EA, Assunção JH, Gracitelli MEC, Yen TK, Bordalo-Rodrigues M, Neto AAF. Accuracy of magnetic resonance imaging (MRI) for subscapularis tear: A systematic review and meta-analysis of diagnostic studies. Archives of Orthopaedic and Trauma Surgery. 2019;139(5):659–667. DOI: https://doi.org/10.1007/s00402-018-3095-6.

Kim SH, Yoo HJ, Yoon SH, Kim YT, Park SJ, Chai JW, et al. Development of a deep learning-based fully automated segmentation of rotator cuff muscles from clinical MR scans. Acta Radiologica. 2024;65(9):1126–1132. DOI: https://doi.org/10.1177/02841851241262325.

Guo D, Liu X, Wang D, Tang X, Qin Y. Development and clinical validation of deep learning for auto-diagnosis of supraspinatus tears. Journal of Orthopaedic Surgery and Research. 2023;18(1):426. DOI: https://doi.org/10.1186/s13018-023-03909-z.

Shim E, Kim JY, Yoon JP, Ki SY, Lho T, Kim Y, et al. Automated rotator cuff tear classification using 3D convolutional neural network. Scientific Reports. 2020;10(1):15632. DOI: http://doi.org/10.1038/s41598-020-72357-0. Erratum in: Scientific Reports. 2021;11(1):15996. DOI: http://doi.org/10.1038/s41598-021-95469-7.

Prudnikov Y, Yuryk O, Sosnov M, Stashkevych A, Martsyniak S. Use of artificial intelligence in the diagnosis and treatment of orthopedic diseases: Literature review. Georgian Medical News. 2024;(9):19–31. PMID: https://pubmed.gov/39580822.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Copyright © 2025 Shabarova N. S., Zhilyakov A. A., Zhilyakov A. V., Volokitina E. A.