Extracorporeal Therapy of Sepsis — Target Change
PDF (Русский)

Keywords

extracorporeal therapy
sepsis
hemosorption
antimicrobial therapy
cytokines

Abstract

This article reviews current methods of extracorporeal therapy for the treatment of sepsis, with emphasis on innovative hemosorption filters such as Seraph 100 Microbind Affinity, GARNET and Hemopurifier. Sepsis is a serious condition associated with an uncontrolled immune response to infection, often resulting in organ failure and high mortality. Conventional methods, including antimicrobial therapy, may not be sufficient in infections caused by resistant pathogens. Hemosorption filters work by removing pathogens and their mediators from the blood, reducing the risk of cytokine storm and improving clinical outcomes. Studies show the efficacy of these devices in the treatment of complex infections including bacteremia and viremia; however, additional large clinical trials are needed to confirm their safety and optimal indications for use.

For citation: Shingur VV, Spichka II. Extracorporeal therapy of sepsis — target change. USMU Medical Bulletin. 2025;10(1):e00136. (In Russ.). DOI: https://doi.org/10.52420/usmumb.10.1.e00136. EDN: https://elibrary.ru/FYANSS.

https://doi.org/10.52420/usmumb.10.1.e00136
PDF (Русский)

References

Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine. 2017;43(3):304–377. DOI: https://doi.org/10.1007/s00134-017-4683-6.

Емельянов ВН, Зоря АИ, Глушков АА. Эпидемиологические особенности антибиотикорезистентности клинически значимых патогенных микроорганизмов на примере бактерий рода Serratia. Медицина. 2024;12(3):118–129. DOI: https://doi.org/10.29234/2308-9113-2024-12-3-118-129.

Monard C, Rimmelé T, Ronco C. Extracorporeal blood purification therapies for sepsis. Blood Purification. 2019;47(Suppl 3):1–14. DOI: https://doi.org/10.1159/000499520.

Емельянов ВН, Кузин АА, Азарова НИ, Товпенко ДВ, Алексеев ПЕ, Куликов ПВ. Оценка социально-экономических затрат, обусловленных болезнями органов дыхания военнослужащих-курсантов. Вестник Российской Военно-медицинской академии. 2019;(4):132–135. EDN: https://elibrary.ru/PRBWSW.

Li JP, Kusche-Gullberg M. Heparan sulfate: Biosynthesis, structure, and function. International Review of Cell and Molecular Biology. 2016;325:215–273. DOI: https://doi.org/10.1016/bs.ircmb.2016.02.009.

McCrea K, Ward R, LaRosa SP. Removal of carbapenem-resistant enterobacteriaceae (CRE) from blood by heparin-functional hemoperfusion media. PLoS One. 2014;9(12):e114242. DOI: https://doi.org/10.1371/journal.pone.0114242.

Mattsby-Baltzer I, Bergstrom T, McCrea K, Ward R, Adolfsson L, Larm O. Affinity apheresis for treatment of bacteremia caused by Staphylococcus aureus and/or methicillin-resistant S. aureus (MRSA). Journal of Microbiology and Biotechnology. 2011;21(6):659–664. DOI: https://doi.org/10.4014/jmb.1102.02016.

Емельянов ВН, Вирко ВА, Беседин АД, Андреевский ГВ. COVID-19 и его несоответствие характеристикам патогенов I группы патогенности: сравнительный анализ. Вестник УГМУ. 2024;(3):17–24. EDN: https://elibrary.ru/PUALDL.

Axelsson J, Ferreira M, Adolfsson L, McCrea K, Ward R, Larm O. Cytokines in blood from septic patients interact with surface-immobilized heparin. ASAIO Journal. 2010;56(1):48–51. DOI: https://doi.org/10.1097/MAT.0b013e3181c3fec8.

Mycroft-West CJ, Su D, Pagani I, Rudd TR, Elli S, Gandhi NS, et al. Heparin inhibits cellular invasion by SARS-CoV-2: Structural dependence of the interaction of the spike S1 receptor-binding domain with heparin. Thrombosis and Haemostasis. 2020;120(12):1700–1715. DOI: https://doi.org/10.1055/s-0040-1721319.

National Library of Medicine. Safety and effectiveness evaluation of seraph 100 microbind affinity blood filter (Seraph 100) in the treatment of patients with COVID-19. Available from: https://clck.ru/3HZJkL [accessed 1 March 2025].

Kielstein JT, Borchina DN, Fühner T, Hwang S, Mattoon D, Ball AJ. Hemofiltration with the Seraph® 100 Microbind® Affinity filter decreases SARS-CoV-2 nucleocapsid protein in critically ill COVID-19 patients. Critical Care. 2021;25(1):190. DOI: https://doi.org/10.1186/s13054-021-03597-3.

Seffer MT, Cottam D, Forni LG, Kielstein JT. Heparin 2.0: A new approach to the infection crisis. Blood Purification. 2021;50(1):28–34. DOI: https://doi.org/10.1159/000508647.

Seffer M-T, Weinert M, Molinari G, Rohde M, Gröbe L, Kielstein JT, et al. Staphylococcus aureus binding to Seraph® 100 Microbind® Affinity Filter: Effects of surface protein expression and treatment duration. PLoS One. 2023;18(3):e0283304. DOI: https://doi.org/10.1371/journal.pone.0283304.

McCrea K, Ward R, LaRosa SP. Removal of carbapenem-resistant enterobacteriaceae (CRE) from blood by heparin-functional hemoperfusion media. PLoS One. 2014;9(12):e114242. DOI: https://doi.org/10.1371/journal.pone.0114242.

Dommett RM, Klein N, Turner MW. Mannose-binding lectin in innate immunity: Past, present and future. Tissue Antigens. 2006;68(3):193–209. DOI: https://doi.org/10.1111/j.1399-0039.2006.00649.x.

Kang JH, Super M, Yung CW, Cooper RM, Domansky K, Graveline AR, et al. An extracorporeal blood-cleansing device for sepsis therapy. Nature Medicine. 2014;20(10):1211–1216. DOI: https://doi.org/10.1038/nm.3640.

Didar TF, Cartwright MJ, Rottman M, Graveline AR, Gamini N, Watters AL, et al. Improved treatment of systemic blood infections using antibiotics with extracorporeal opsonin hemoadsorption. Biomaterials. 2015;67:382–392. DOI: https://doi.org/10.1016/j.biomaterials.2015.07.046.

National Library of Medicine. GARNET™ filter (GARNET device) IDE used in chronic hemodialysis patients with a bloodstream infection. Available from: https://clck.ru/3HZaeK [accessed 1 March 2025].

Büttner S, Koch B, Dolnik O, Eickmann M, Freiwald T, Rudolf S, et al. Extracorporeal virus elimination for the treatment of severe Ebola virus disease: First experience with lectin affinity plasmapheresis. Blood Purification. 2014;38(3–4):286–291. DOI: https://doi.org/10.1159/000375229.

Amundson DE, Shah US, de Necochea-Campion R, Jacobs M, LaRosa SP, Fisher CJ Jr. Removal of COVID-19 spike protein, whole virus, exosomes, and exosomal microRNAs by the Hemopurifier® lectin-affinity cartridge in critically ill patients with COVID-19 infection. Frontiers in Medicine. 2021;8:744141. DOI: https://doi.org/10.3389/fmed.2021.744141.

Марухов АВ, Захаров МВ, Чубченко НВ, Щербак СГ. Оценка in vitro адсорбционных свойств различных устройств для селективной гемосорбции липополисахарида (экспериментальное исследование). Вестник анестезиологии и реаниматологии. 2022;19(1):52–57. DOI: https://doi.org/10.21292/2078-5658-2022-19-1-52-57. EDN: https://elibrary.ru/GYBBFT.

Самуйлов АА, Заварзин АЮ. Экстракорпоральная детоксикация в интенсивной терапии тяжелого сепсиса. Московский хирургический журнал. 2020;(1):108–110. DOI: https://doi.org/10.17238/issn2072-3180.2020.1.108-110. EDN: https://www.elibrary.ru/EECSWM.

Ковзель ВА, Давыдова ЛА, Карзин АВ, Царенко СВ, Батурова ВЮ, Полупан АА, и др. Методы экстракорпоральной гемокоррекции при сепсисе. Общая реаниматология. 2023;19(2):68–82. DOI: https://doi.org/10.15360/1813-9779-2023-2-2282. EDN: https://www.elibrary.ru/NVQFLY.

Chong DL, Sriskandan S. Pro-inflammatory mechanisms in sepsis. In: Herwald H, Egesten A (eds.). Sepsis — pro-inflammatory and anti-inflammatory responses: Good, bad or ugly? S. Karger AG; 2011. P. 86–107. DOI: https://doi.org/10.1159/000324022.

Osuchowski MF, Welch K, Siddiqui J, Remick DG. Circulating cytokine/inhibitor profiles reshape the understanding of the SIRS/CARS continuum in sepsis and predict mortality. The Journal of Immunology. 2006;177(3):1967–1974. DOI: https://doi.org/10.4049/jimmunol.177.3.1967.

Shubin NJ, Monaghan SF, Ayala A. Anti-inflammatory mechanisms of sepsis. In: Herwald H, Egesten A (eds.). Sepsis — pro-inflammatory and anti-inflammatory responses: Good, bad or ugly? S. Karger AG; 2011. P. 108–124. DOI: https://doi.org/10.1159/000324024.

Мешков ВМ, Аниховская ИА, Яковлева ММ, Яковлев МЮ. Кишечный эндотоксин в регуляции активности системы гемостаза и патогенезе ДВС-синдрома. Физиология человека. 2005;31(6):91–96. EDN: https://www.elibrary.ru/HSGEWH.

Schefold JC, Hasper D, Jorres A. Organ crosstalk in critically ill patients: Hemofiltration and immunomodulation in sepsis. Blood Purification. 2009;28(2):116–123. DOI: https://doi.org/10.1159/000223361.

Naka T, Shinozaki M, Akizawa T, Shima Y, Takaesu H, Nasu H. The effect of continuous veno-venous hemofiltration or direct hemoperfusion with polymyxin B-immobilized fiber on neutrophil respiratory oxidative burst in patients with sepsis and septic shock. Therapeutic Apheresis and Dialysis. 2006:10(1):7–11. DOI: https://doi.org/10.1111/j.1744-9987.2006.00339.x.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Copyright © 2025 Shingur V. V., Spichka I. I.