Abstract
Bone defects are becoming increasingly common and have a huge impact on the quality of life of patients. The development of new materials for bone implantation is a major challenge. Оbjective of the study is to determine the influence of new ceramic materials based on lanthanum zirconate on human cell culture in order to assess the prospects for their use as bone replacement implants. Materials and methods. To study the cytocompatibility of the new materials, a culture of human dermal fibroblasts was used. Bioceramic samples: La2Zr2O7 (undoped lanthanum zirconate, LZ), La0.9Ca0.1Zr2O6.95 (calcium-doped lanthanum zirconate, LZCa) and La0.9Sr0.1Zr2O6.95 (lanthanum zirconate doped with strontium, LZSr), were used in the form of round plates (d = 5 mm, h = 2 mm). Sterile plates were placed into the wells of a 24-well plate and a cell suspension (500 μl) was added. Cells were cultured without changing the medium for 5 days. Control — wells without bioceramic samples. The cytocompatibility study included determination of the viability and proliferative activity of cells after 1, 3 and 5 days of cultivation. Results. The study determined the cytocompatibility of the studied ceramics based on lanthanum zirconate. An increase in the proliferative activity and viability of human fibroblasts after a period of cell adaptation was shown. It has been established that doping lanthanum zirconate with calcium or strontium slows down the adaptation of human fibroblasts during cultivation without significant differences between LZCa and LZSr. Conclusions. The viability of human fibroblasts varies within acceptable values and is sufficient to maintain their recovery potential when growing on the ceramic materials under study. The implementation of this stage of preclinical research provides justification for further study of these materials for bone tissue augmentation.
Funding.
The work was supported by the Russian Science Foundation (grant No. 22-25-20037), https://rscf.ru/en/project/22-25-20037/.
For citation
Volokitina EA, Ulitko MV, Antonets YuYa, Antropova IP, Timofeev KA. Effect of new ceramic materials based on lanthanum zirconate on human cell culture. Bulletin of USMU. 2023;(4):7–17. (In Russ.). EDN: https://elibrary.ru/MIPNBM.
References
Гилев М. В. Хирургическое лечение внутрисуставных импрессионных переломов дистального отдела лучевой кости // Гений ортопедии. 2018. Т. 24, № 2. С. 134–141. DOI: https://doi.org/10.18019/1028-4427-2018-24-2-134-141.
Clinical and Research Approaches to Treat Non-union Fracture / C. Schlundt, C. H. Bucher, S. Tsitsilonis [et al.] // Current Osteoporosis Reports. 2018. Vol. 16, Iss. 2. P. 155–168. DOI: https://doi.org/10.1007/s11914-018-0432-1.
Cleft Alveolar Bone Graft Materials: Literature Review / C. Dissaux, L. Ruffenach, C. Bruant-Rodier [et al.] // The Cleft Palate Craniofacial Journal. 2022. Vol. 59, Iss. 3. P. 336–346. DOI: https://doi.org/10.1177/10556656211007692.
Ferraz M. P. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials // Materials. 2023. Vol. 16, Iss. 11, Art. No. 4117. DOI: https://doi.org/10.3390/ma16114117.
Basic Research and Clinical Application of Beta-tricalcium Phosphate (β-TCP) / T. Tanaka, H. Komaki, M. Chazono [et al.] // Morphologie. 2017. Vol. 101, Iss. 334. P. 164–172. DOI: https://doi.org/10.1016/j.morpho.2017.03.002.
Calcium Phosphate Ceramics and Synergistic Bioactive Agents for Osteogenesis in Implant Dentistry / C. Xu, Y. Sun, J. Jansen [et al.] // Tissue Engineering. Part C : Methods. 2023. Vol. 29, No. 5. P. 197–215. DOI: https://doi.org/10.1089/ten.TEC.2023.0042.
Relative Performance of Various Biomaterials Used for Maxillary Sinus Augmentation: A Bayesian Network Meta-analysis / B. Trimmel, N. Gede, P. Hegyi [et al.] // Clinical Oral Implants Research. 2021. Vol. 32, Iss. 2. P. 135–153. DOI: https://doi.org/10.1111/clr.13690.
Bioceramics for Osteochondral Tissue Engineering and Regeneration / S. Pina, R. Rebelo, V. M. Correlo [et al.] // Osteochondral Tissue Engineering / Ed. by J. Oliveira, S. Pina, R. Reis, J. San Roman. Cham : Springer, 2018. P. 53–75. DOI: https://doi.org/10.1007/978-3-319-76711-6_3.
Zirconia Surface Modifications for Implant Dentistry / F. Schünemann, M. Galárraga-Vinueza, R. Magini [et al.] // Materials Science and Engineering: C. 2019. Vol. 98. P. 1294–1305. DOI: https://doi.org/10.1016/j.msec.2019.01.062.
Magnesium-Containing Mixed Coatings on Zirconia for Dental Implants: Mechanical Characterization and In Vitro Behavior / K. Pardun, L. Treccani, E. Volkmann [et al.] // Journal of Biomaterials Applications. 2015. Vol. 30, Iss. 1. P. 104–118. DOI: https://doi.org/10.1177/0885328215572428.
Ceramic Materials Based on Lanthanum Zirconate for the Bone Augmentation Purposes: Materials Science Approach / N. Tarasova, A. Galisheva, K. Belova [et al.] // Chimica Techno Acta. 2022. Vol. 9, Iss. 2, Art. No. 20229209. DOI: https://doi.org/10.15826/chimtech.2022.9.2.09.
Current Findings Regarding Zirconia Implants / R. Depprich, C. Naujoks, M. Ommerborn [et al.] // Clinical Implant Dentistry and Related Research. 2014. Vol. 16, Iss. 1. P. 124–137. DOI: https://doi.org/10.1111/j.1708-8208.2012.00454.x.
A Review of Engineered Zirconia Surfaces in Biomedical Applications / L. Yin, Y. Nakanishi, A. R. Alao [et al.] // Procedia CIRP. 2017. Vol. 65. P. 284–290. DOI: https://doi.org/10.1016/j.procir.2017.04.057.
Current Status and Future Potential of Wear-Resistant Coatings and Articulating Surfaces for Hip and Knee Implants / C. Skjöldebrand, J. L. Tipper, P. Hatto [et al.] // Mater Today Bio. 2022. Vol. 30, Iss. 15, Art. No. 100270. DOI: https://doi.org/10.1016/j.mtbio.2022.100270.
Zirconium Ions Up-Regulate the BMP/SMAD Signaling Pathway and Promote the Proliferation and Differentiation of Human Osteoblasts / Y. Chen, S. Roohani-Esfahani, Z. Lu [et al.] // PLoS ONE. 2015. Vol. 10, Iss. 1, Art. No. e0113426. DOI: https://doi.org/10.1371/journal.pone.0113426.
Development of Bone-Like Zirconium Oxide Nanoceramic Modified Chitosan Based Porous Nanocomposites for Biomedical Application / A. Bhowmick, N. Pramanik, P. Jana [et al.] // International Journal of Biological Macromolecules. 2017. Vol. 95. P. 348–356. DOI: https://doi.org/10.1016/j.ijbiomac.2016.11.052.
Pantulap U., Arango-Ospina M., Boccaccini A. R. Bioactive Glasses Incorporating Less-Common Ions to Improve Biological and Physical Properties // Journal of Materials Science: Materials in Medicine. 2021. Vol. 33, Iss. 1, Art. No. 3. DOI: https://doi.org/10.1007/s10856-021-06626-3.
Lanthanum Chloride Attenuates Osteoclast Formation and Function Via the Downregulation of Rankl-Induced Nf-κb and Nfatc1 Activities / C. Jiang, J. Shang, Z. Li [et al.] // Journal of Cellular Physiology. 2016. Vol. 231, Iss. 1. P. 142–151. DOI: https://doi.org/10.1002/jcp.25065.
Barium Oxide Doped Magnesium Silicate Nanopowders for Bone Fracture Healing: Preparation, Characterization, Antibacterial and In Vivo Animal Studies / M. Mabrouk, G. Ibrahim Fouad, H. H. Beherei, D. B. Das // Pharmaceutics. 2022. Vol. 14, Iss. 8. Art. No. 1582. DOI: https://doi.org/10.3390/pharmaceutics14081582.
Gadolinium-Doped Bioglass Scaffolds Promote Osteogenic Differentiation of hBMSC via the Akt/GSK3β Pathway and Facilitate Bone Repair In Vivo / D. Y. Zhu, B. Lu, J. H. Yin [et al.] // International Journal of Nanomedicine. 2019. Vol. 11, Iss. 14. P. 1085–1100. DOI: https://doi.org/10.2147/IJN.S193576.
Jung G., Park Y., Han J. Effects of HA Released Calcium Ion on Osteoblast Differentiation // Journal of Materials Science: Materials in Medicine. 2010. Vol. 21, Iss. 5. P. 1649–1654. DOI: https://doi.org/10.1007/s10856-010-4011-y.
Характеристика костной ткани при имплантации керамического материала на основе цирконата лантана в эксперименте / М. Ю. Измоденова, М. В. Гилев, М. В. Ананьев [и др.] // Травматология и ортопедия России. 2020. Т. 26, № 3. С. 130–140. DOI: https://doi.org/10.21823/2311-2905-2020-26-3-130-140.
Влияние керамического материала на основе цирконата лантана на динамику гематологических показателей и маркеров ремоделирования костной ткани: экспериментальное исследование / И. П. Антропова, Е. А. Волокитина, М. Ю. Удинцева [и др.] // Травматология и ортопедия России. 2022. Т. 28, № 1. С. 79–88. DOI: https://doi.org/10.17816/2311-2905-1704.
Silva A., Pallone E., Lobo A. Modification of Surfaces of Alumina-Zirconia Porous Ceramics with Sr2+ after SBF // Journal of the Australian Ceramic Society. 2020. Vol. 56. P. 517–524. DOI: https://doi.org/10.1007/s41779-019-00360-4.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
Copyright © 2023 Volokitina E. A., Ulitko M. V., Antonets Yu. Ya., Antropova I. P., Timofeev K. A.