Biosensors and Their Application in Medical Diagnostics
PDF (Русский)

Keywords

biosensors
medical diagnostics
health monitoring
diagnosis of diseases

Abstract

Currently, clinical and laboratory diagnostics is undergoing active technological changes. Each medical organization is equipped with equipment that allows you to automate and speed up the process of assessing the patient’s condition. However, classical research methods can be lengthy and do not always meet the needs of the doctor, which requires the use of more sensitive and specific analyzers. This article examines the role of biosensors, portable devices consisting of a biological element (antibody, antigen, enzyme of a DNA fragment or RNA), a physical signal converter and a working solution and their role in modern laboratory diagnostics. In modern clinical practice, biosensors are widely used for the early detection of various diseases, monitoring the general health of patients, providing a personal approach to the treatment and prevention of diseases. The main advantages of using them are: the speed of obtaining results, the possibility of repeated use, as well as high sensitivity and specificity, which allows the attending physician to obtain more detailed information about the patient’s condition and choose the right treatment tactics. The review analyzed biosensor devices used in modern medical practice for the analysis of genetic material, cellular and chemical analysis of blood, visualization of internal organs and serological studies.

For citation
Khizriev UI, Besedin AD, Klishin IV. Biosensors and their application in medical diagnostics. USMU Medical Bulletin. 2024;(3):57–65. (In Russ.). EDN: https://elibrary.ru/FJHZRK.

PDF (Русский)

References

Упрощенные форматы современных биосенсоров: 60 лет использования иммунохроматографических тест-систем в лабораторной диагностике / Б. Г. Андрюков, И. Н. Ляпун, М. П. Бынина, Е. В. Матосова // Клиническая лабораторная диагностика. 2020. Т. 65, № 10. С. 611–618. EDN: https://www.elibrary.ru/ibvnza.

Аннагулыев Г., Байгелдиев Х. Исследование возможностей использования неорганических материалов в медицине и биотехнологии // Всемирный ученый. 2024. № 20. URL: https://clck.ru/3DbW6D (дата обращения: 10.09.2024).

Морфологическое обоснование возможности использования электрохимических биосенсоров в диагностике колоректального рака / С. Верник, А. Н. Белкин, Г. Г. Фрейнд [и др.] // Пермский медицинский журнал. 2012. Т. 29, № 5. С. 5–12. EDN: https://elibrary.ru/pjhaej.

Биосенсоры: современное состояние и перспективы применения в лабораторной диагностике особо опасных инфекционных болезней / Д. В. Уткин, Н. А. Осина, В. Е. Куклев [и др.] // Проблемы особо опасных инфекций. 2009. № 4. С. 11–14. EDN: https://www.elibrary.ru/kxxidr.

Иммуносенсорная нанотехнология / А. А. Кузнецова, В. Г. Сергеев, С. М. Перевозчиков, Л. Д. Загребин // Химическая физика и мезоскопия. 2006. Т. 8, № 4. С. 455–460. EDN: https://www.elibrary.ru/pjvbmb.

Исламов Р. А., Ибрагимова Н. А. Перспективы нанотехнологии для медицинской науки // Вестник КазНМУ. 2010. № 4. URL: https://clck.ru/3DbXBw (дата обращения: 10.09.2024).

Наноразмерный биосенсор со встроенным терморегулятором для ДНК-диагностики / И. И. Циняйкин, Г. В. Преснова, И. В. Божьев [и др.] // Вестник Московского университета. Серия 3: Физика. Астрономия. 2023. № 2, № статьи 2320701. DOI: https://doi.org/10.55959/MSU0579-9392.78.2320701.

Электронные биохимические наносенсоры для клинических исследований / В. П. Попов, А. В. Тронин, А. В. Глухов, Ю. Д. Иванов // Инновации. 2014. № 3. С. 94–100. EDN: https://www.elibrary.ru/tegnbv.

Кузнецова Е. А. Сравнение микробных биосенсоров с различным способом регистрации сигнала // Вестник науки и образования. 2017. № 11. С. 6–8. EDN: https://www.elibrary.ru/zsmezf.

Kim H., Chung D.-R., Kang M. A New Point-of-Care Test for the Diagnosis of Infectious Diseases Based on Multiplex Lateral Flow Immunoassays // Analyst. 2019. Vol. 144, Iss. 8. P. 2460–2466. DOI: https://doi.org/10.1039/c8an02295j.

Early Sepsis Diagnosis via Protein and miRNA Biomarkers Using a Novel Point-of-Care Photonic Biosensor / N. Fabri-Faja, O. Calvo-Lozano, P. Dey [et al.] // Analytica Chimica Acta. 2019. Vol. 1077. P. 232–242. DOI: https://doi.org/10.1016/j.aca.2019.05.038.

Integrated Biosensor for Rapid and Point-of-Care Sepsis Diagnosis / J. Min, M. Nothing, B. Coble [et al.] // ACS Nano. 2018. Vol. 12, Iss. 4. P. 3378–3384. DOI: https://doi.org/10.1021/acsnano.7b08965.

Alarm Lateral Flow Immunoassay for Detection of the Total Infection Caused by the Five Viruses / I. V. Safenkova, V. G. Panferov, N. A. Panferova [et al.] // Talanta. 2019. Vol. 195. P. 739–744. DOI: https://doi.org/10.1016/j.talanta.2018.12.004.

Quantum Dots-Based Lateral Flow Immunoassay Combined with Image Analysis for Semiquantitative Detection of IgE Antibody to Mite / Y. Zhao, Q. Zhang, Q. Meng [et al.] // International Journal of Nanomedicine. 2017. Vol. 12. P. 4805–4812. DOI: https://doi.org/10.2147/IJN.S134539.

Development of Prototype Filovirus Recombinant Antigen Immunoassays / M. L. Boisen, D. Oottamasathien, A. B. Jones [et al.] // The Journal of Infectious Diseases. 2015. Vol. 212, Suppl. 2. P. S359–S367. DOI: https://doi.org/10.1093/infdis/jiv353.

Development of a Lateral Flow Assay for Rapid Detection of Bovine Antibody to Anaplasma Marginale / K. Nielsen, W. L. Yu, L. Kelly [et al.] // Journal of Immunoassay and Immunochemistry. 2008. Vol. 29, Iss. 1. P. 10–18. DOI: https://doi.org/10.1080/15321810701734693.

Evaluation of a New Lateral Flow Test for Detection of Streptococcus Pneumoniae and Legionella Pneumophila Urinary Antigen / C. S. Jørgensen, S. A. Uldum, J. F. Sørensen [et al.] // Journal of Microbiological Methods. 2015. Vol. 116. P. 33–36. DOI: https://doi.org/10.1016/j.mimet.2015.06.014.

A Lateral Flow Assay for Quantitative Detection of Amplified HIV-1 RNA / B. A. Rohrman, V. Leautaud, E. Molyneux [et al.] // PLoS One. 2012. Vol. 7, Iss. 9, Art. No. e45611. DOI: https://doi.org/10.1371/journal.pone.0045611.

Rapid Molecular Detection of Multidrug-Resistant Tuberculosis by PCR-Nucleic Acid Lateral Flow Immunoassay / H. Kamphee, A. Chaiprasert, T. Prammananan [et al.] // PLoS One. 2015. Vol. 10, Iss. 9, Art. No. e0137791. DOI: https://doi.org/10.1371/journal.pone.0137791.

Pilavaki E., Demosthenous A. Optimized Lateral Flow Immunoassay Reader for the Detection of Infectious Diseases in Developing Countries // Sensors. 2017. Vol. 17, Iss. 11, Art. No. 2673. DOI: https://doi.org/10.3390/s17112673.

Posthuma-Trumpie G. A., Korf J., van Amerongen A. Lateral Flow (Immuno)Assay: Its Strengths, Weaknesses, Opportunities and Threats. A Literature Survey // Analytical and Bioanalytical Chemistry. 2008. Vol. 393, Iss. 2. P. 569–582. DOI: https://doi.org/10.1007/s00216-008-2287-2.

Introduction to Biosensors / N. Bhalla, P. Jolly, N. Formisano, P. Estrela // Essays in Biochemistry. 2016. Vol. 60, Iss. 1. P. 1–8. DOI: https://doi.org/10.1042/ebc20150001.

Advances in Biosensors and Optical Assays for Diagnosis and Detection of Malaria / K. V. Ragavan, S. Kumar, S. Swaraj, S. Neethirajan // Biosensors and Bioelectronics. 2018. Vol. 105. P. 188–210. DOI: https://doi.org/10.1016/j.bios.2018.01.037.

Biosensors in Health Care: The Milestones Achieved in Their Development Towards Lab-on-Chip-Analysis / S. Patel, R. Nanda, S. Sahoo, E. Mohapatra // Biochemistry Research International. 2016. Vol. 2016, Art. No. 3130469. DOI: https://doi.org/10.1155/2016/3130469.

Biomaterials Nanoarchitectonics / Ed. by M. Ebara. William Andrew, 2016. 362 p. DOI: https://doi.org/10.1016/c2014-0-02556-7.

Biopolymer Composites in Electronics / Ed. by K. K. Sadasivuni, D. Ponnamma, J. Kim [et al.]. Elsevier, 2017. 544 p. DOI: https://doi.org/10.1016/c2014-0-04575-3.

Sensitive Optical Biosensors for Unlabeled Targets: A Review / X. Fan, I. M. White, S. I. Shopova [et al.] // Analytica Chimica Acta. 2008. Vol. 620, Iss. 1–2. P. 8–26. DOI: https://doi.org/10.1016/j.aca.2008.05.022.

Recent Advances in Biosensors for Diagnosis and Detection of Sepsis: A Comprehensive Review / S. Kumar, S. Tripathy, A. Jyoti, S. G. Singh // Biosensors and Bioelectronics. 2019. Vol. 124–125. P. 205–215. DOI: https://doi.org/10.1016/j.bios.2018.10.034.

Component Costs of Foodborne Illness: A Scoping Review / T. McLinden, J. M. Sargeant, M. K. Thomas [et al.] // BMC Public Health. 2014. Vol. 14, Art. No. 509. DOI: https://doi.org/10.1186/1471-2458-14-509.

A Labelfree Impedimetric Aptasensor for the Detection of Bacillus Anthracis Spore Simulant / V. Mazzaracchio, D. Neagu, A. Porchetta [et al.] // Biosensors and Bioelectronics. 2019. Vol. 126. P. 640–646. DOI: https://doi.org/10.1016/j.bios.2018.11.017.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Copyright © 2024 Khizriev U. I., Besedin A. D., Klishin I. V.